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S U M M A R Y  

We consider the motion of an inviscid, incompressible fluid with surface tension T, in an infinite channel of finite depth, 
when a pressure disturbance is imposed on the uniform stream. The explicit solution of the resulting initial value 
problem is presented. Also, possible steady state flows are discussed. In the cases when they exist, corresponding radia- 
tion conditions are found. 

1. Introduction 

We consider an incompressible, non-viscous fluid with a surface tension T, moving in a uniform 
channel of finite depth which extends to infinity laterally. Our object is to study both the steady 
and the unsteady waves created by a disturbance imposed on the surface of a running stream. 
The disturbances considered are assumed to be so small that we can treat the problem within 
the framework of linearized theory. 

The imposition of a disturbance on the surface of the running stream leads to a non-homo- 
geneous boundary condition. The corresponding homogeneous problem is known to have 
non-trivial steady state solutions if U 2 < 9h, with U, the initial velocity and h, the undisturbed 
depth of the fluid. As a result, the non-homogeneous problem for steady states does not, in 
general, have a unique solution, when boundedness conditions alone are imposed at infinity. 
However, the imposition of appropriate radiation conditions at infinity does lead to the exis- 
tence of uniquely determined steady state solution. These conditions, however, are not known 
a priori. 

Several devices, both of physical as well as of mathematical nature have been used to pick 
out a unique solution of the steady state problem without the direct imposition of radiation 
conditions. Michell [1], for example, chooses the solution which represents the gravity waves 
downstream only. The neglect of the part upstream amounts to the superposition of an 
appropriate solution of the homogeneous problem. Such a procedure is justified as long as the 
physical requirement, that in a moving frame of reference, the group velocity of the gravity 
waves is less than the phase velocity of the wave, is satisfied. Another device which is mathe- 
matical in nature has been used by Rayleigh [2]. This consists in introducing a small fictitious 
"dissipative force" which, without changing the character of the motion, makes the solution 
determinate. This new factor is then made to vanish in the final result. Lamb [3] uses this 
technique to discuss some cases of wave propagation. It turns out, however, that the solution 
thus obtained is not complete. There is a curious feature of the results of Lamb. These solutions 
involve a parameter UZ/gh. In case its value is one, the steady state solution has a large ampli- 
tude thus casting doubt even on the feasibility of the steady state solution in the framework of 
linear theory. 

The point of view adopted here is that these odd phenomena stem in part from the unnatural- 
ness of the steady state formulations in Newtonian mechanics. A way out, as has been considered 
by Green [4] and Stoker [-5, 6], is to treat the complete initial value problem. The steady 
state solution, if it exists, should result from the unsteady solution in the limit as the time tends 
to infinity. This procedure has been followed here. Indeed, the results show that the transients 
die out in the supercritical and subcritical cases i.e. when U 2 ~gh. In the critical case when 
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U2= gh there is no steady state solution in the linear theory. We then consider the radiation 
conditions at the two ends. In the supercritical case, the disturbance dies out both upstream 
and downstream. In the subcritical case, it dies out upstream but not, in general, downstream. 
It, however, depends inversely on the surface tension. The wave length at infinity is fixed by 
the velocity of the stream U, the undisturbed stream depth h, and the surface tension of the 
medium. These results agree with those of Stoker for the case in which the medium does not 
admit surface tension. 

I wish to express my gratitude to Professor J. J. Stoker for suggesting this problem to me. 
Thanks are also due to him, as well as to Professor A. S. Peters, for the fruitful discussions I had 
towards the completion of this work. 

2. Formulat ion  o f  the Prob lem 

We consider a two-dimensional flow of liquid in a uniform channel which extends to infinity 
laterally and has a horizontal bottom. The liquid is taken to be inviscid, incompressible with 
a constant density p and surface tension T. We take the axis of x in the undisturbed free surface 
and the axis of y vertically upward. It is assumed that the motion is irrotational so that a 
velocity potential exists. 

The liquid, initially, moves with a uniform velocity U in the positive x direction until a 
pressure disturbance/7 (x, t), - oo < x < o% is imposed on the free surface. The motion is 
considered a small perturbation so that a linear theory can be applied. Let ~, q5 be the complete 
and the disturbed flow so that ~(x, y, t)=qS(x, y, t )+ Ux. 

The differential equation governing the motion is 

V 2 q ~ ( x , y , t ) = O  y < 0 ,  - c ~ < x <  oo. 

Bernoulli's law has the following form at the free surface 

H + grl + 1 2 T fix ~ -- ~ + ~ ( ~ + ~ )  + - -  - 0 for y = , ( x , t )  
P p (1 +t/~z) ~ 

where tt (x, t) is the elevation of the free surface. The kinematic free surface condition and the 
condition at the bottom of the channel are: 

q t + ~ x - ~ y =  0 at y = q  
and 

~by=0 at y = - h .  

We further require that for any finite time t, the Fourier transforms of 7, / / ,  ~ and their deriva- 
tives in x, exist. This condition, reasonable from physical point of view, means that the disturb- 
ances initiated in a given region require time to reach distant parts. 

At the time t = 0  the following initial conditions are imposed: 

q~ (x, y, 0) = ~ (x, 0) = n (x, 0) = 0 
and 

//(x, t) -=//(x) for t > 0.  

They correspond to the uniform flow as initial state, with the horizontal free surface and the 
subsequent application of a steady pressure disturbance for t >0. 

The above equations are linearized with the following results: 

v2 = o (1) 

/ /  T 
- -  + g q  + q~, + Uq~  + - -  r/x~ = 0 at y = 0 (2) 
P P 

qt + U~/x = 4~y at y = 0 (3) 

q~y = 0 at y = - h  (4) 
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From (2) and the initial conditions, it follows that ~b(x, y, 0)=Or(x, y, O)=0 at y=0 .  
The problem then is to solve (1) in the strip - h < y < 0 under the conditions mentioned above. 

3. The Unsteady Wave Solution 

We shall solve the problem by using the Fourier transform technique. The equations (1) and 
(4) transform into 

~yy-- s 2 ~ = 0 

qSy(s, - h ,  t )=  0 

where the "bar" refers to the Fourier transform ~ (s, y, t) of ~b (x, y, t). Thus 

q5 (s, y, t) = A (s, t) cosh s (y + h). (6) 

Also eliminating f/from the transforms of the equations (2) and (3), we get, 

~tt+2is~t_s2U2~_~y(s2 T ) H - - -  g = - i s - - .  (7) 
P P 

The two yield the following differential equation to determine A (s, t): 

At t+2 i sUAt -A{sZU2+s( s2T-  g)tanhsh}=-isuH---sechsh. 
P P 

The initial conditions for A (s, t) are obtained by making use of (5). These are A (s, 0)= 0, 
At (s, 0)= 0. It then follows 

A(s,t)= isUH [ 1 1 (e -its+ e-its )] 
cosh s h k f + ' f _  + 2(T/p)�89 ~+ f_ 

where f+_ = sU+(T/p)-~k(s) 
k = {s(a 2 - s  2) tanh sh} ~ 
a 2 = pg/T 

Inverting the transformation, we have 

q~(x,y, t) = (2n) _~ A (s, t) cosh s(y + h)ei~X ds (9) 

Provided, we hold the three terms in the above expression for A together, we have to discuss 
the convergence of the integral (9) only at the two ends. For large values of s, the integrand, in 
absolute value varies as I H (s) ls-2 &s etS3/2. We require that H(s) = g (s) e-  ~2 where g (s)is an analytic 
function bounded at the two infinities. The integral then will converge uniformally for any 
finite value of t. It may be remarked that this form of H(s) is quite appropriate, from physical 
viewpoint, because the disturbances in a stream, generally, are of local nature. Having obtained 
r (x, y, t) we can use (2) or (3) to obtain the elevation ~/(x, t) at the free surface. 

4. Existence of Steady Flow 

Our main interest now is to study what may happen when time t, tends to infinity. It is clear 
from the expression for A that the two out of the three terms represent the transients. These 
must vanish in the limit, if the steady state is to exist. 

To study this, we shall change the path of integration in the complex s plane so as to avoid 
the singularities of A(s, t) and then consider each integral individually. To begin with, let 

e ( s ) =  - _r k (s ) 
P 

Then for 

Journal of Engineering Math., Vol. 4 (1970) 283-290 



286 K. K. Puri 

g 2 

gh 

U 2 

gh 

> 1 F (s) has a zero of second order  at  s = 0 

- 1 F(s) has a zero of four th  order  at  s = 0 

g 2 

- -  < 1 F(s) has a zero of  second order  at  s = 0 and two simple zeros at  s =  __fl 
gh where I/~l < a. 

Also we can define the function A (s, t) as an analyt ic  function in a small  domain  enclosed by  
the dot ted lines in the s-plane. (See fig. 1) 

I ' -  
I 
I _ --'-a 

s plane 

I 

i L 

a 

Figure I 

P 

r_ r+ 

Figure 2 

We then use Cauchy ' s  theorem to change the pa th  of  integrat ion of the integral  (9) f rom the 
real line to the con tour  L as shown in the figure i. 

Case I U 2 > gh 

Ins tead of  considering the integral  as such, we consider 

i 
fLs A (s, t) cosh s(y + h )eiS~ ds = i(x) + itt) 

where 1(~) _ - U , f~. H s  2 cosh s(y+ h) eiS~ ds 
2 ( ~ p T )  ~ f + - f _  

i(t) - - U fs s 2 cosh s(y+ h) (exp(- i t f+)  e x p ( - i t f _ ) )  . 
2 (2npT) ~ cosh sh k (s) \ f+ f_ e '~ ds 

We wish to s tudy the limit of  U ) as t ~  ~ .  The  only zero of the d e n o m i n a t o r  of  the integrand,  
o ther  than  the b ranch  points  at  s = _+ a, is a double  zero at  s = 0 which is cancelled by  the factor  
s 2 in the numera to r .  Hence  we can change the con tou r  back  to  the real line. We  shall b reak  
the integral  I (~ into 5 par ts  

I(t) i+(t) + -(t) +(t) -(t) = I ~  + l ~ + I _ o ~ + I _ o ~  

- U  | ' ~  s 2 cosh s(y+h) e x p ( - i t f + ) e  i~ ds 
where I+~ (~ - 2(2~fi-T) ~, J .  cosh sh k(s) f+ 
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and so on for the other integrals. 
Let s = a + t 3 Z 2, then : 

- U  . 3 (  c~ 
I +(t) - 2 (2~pT)~_l exp {t(xa- Uta)}t~ Jo O(z, t) exp {iz2(t3x - Ut)}dz 

where 0(z, t) = [_[cosh (a+t3z2)29(a+t3z2) cosh (a+t3z2)(y+h) I ] 
h ( a + ~ a  z ~ - 2 ~ - t a ~ )  t~nh- h ( ~ 3  z2)}- ] 

T (a+ t3z2)(2a+ taz2)t3z 2 tanh h(a+ t3z2)~l- 1 �9 [iU(a+taz 2) - p 

-[exp {--(a+t3z2)2 +tl l /2z(  r (z2 +at-3)(z2 + 2at -3) tanh h(a+t3z2)~)}]. 

Denoting these expressions by 01, 02, 03, we have 

O(z, t)= 01"02"03 
= 01 (-- i0~--///;)" Oa = 0 ' +  i0" 

where 0 ' = - 0 1 . 0 ~ . 0 3  and 0 " = - 0 1 . 0 ~ . 0 a .  
We have therefore to consider the integrals, 

f 2 ( 2 ~ p r ?  exp {i(xa-Uta)}t~ o (0'+i0") exp {iz2(xt 3 -  Ut4)}dz 

U {i(xa-Uta)} t~[([ '(r/p)'/" + foo )(O,+iO,,)exp{iz2(xta_Ut4)}dz] 
- 2(2npT)~ exp -~. J o J(r/p),/, 

= J1 + J2, say 

U {i(xa-Uta)}t '[ f~/"v 'O j exp iz2(xta-Ut4)dz] where J1 - 2(2~zpT) ~ exp 

where j = '  o r " .  

The function 0 j, being analytic will have a finite number of zeros and stationary points in the 
interval [0, (T/p)~]. This implies that it is possible to divide this interval into a finite number of 
subintervals such that 0 i is monotonic in each one of them and maintains the same sign. Let 
one such interval be (e, fl). We shall prove that the contribution, 1, to the integral Jx, from this 
interval vanishes as t~oo.  There are four cases" In (c~, fl), 0 j is 

(i) positive and monotonically decreasing 
(ii) positive and monotonically increasing 
(iii) negative and monotonically increasing 
(iv) negative and monotonically decreasing. 
Case (i) 

U exp{i(ax- Uta)t~OJ(ct, t) Re + i  Im exp{i ( -  Ut4+xta)z2}dz 
I -- 2 (2~p T) ~ 

Also 

icy exp {i(xt a - Ut 4) 42 
exp {i(xt 3 -  Ut4)z2)dz = 2ir - Ut4) 

~< {~<fl; v = l , 2  

exp {i(xt 3 - Ut4)} ~2 
2ic~ (xt 3 - U t  4) 

+ 0 (xt 3 -- Ut 4)- 2 for c~ r 0 

=rc~ e x p ( -  4 )  {4[xt3-Ut41}-~+ O{(Ut4-xt3)-i } for e = 0  
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Also it can be easily verified that lim r t) is finite. Hence I ~ 0  as t ~ .  
t---r ~ 

Case (ii) we write 

U 
- I  - 2(2rcpT) ~ exp { i ( a x -  Uta)} # 

�9 [ f P  (r {i(xt 3 -  Ut4)z2}dz-q /J ( f l ) f~exp  [i(xt3-v,4)z2}az] 
Each of the two integrals on the right is of the same form as the one discussed in case (i). 

The cases (iii) and (iv) reduce to the cases (i) and (ii) respectively if we replace ~J by - ~ .  
Hence I ~ 0  as t ~ .  Since (a, fl) was any arbitrary subinterval, we conclude J o 0  as t o ~ .  
We now study the integral J2. 

u# Lr & [J2[ < 2(2rcpT) ~ ~r/p)~ 

It can easily be seen that for large values of t 

IOxl_-<t3z2(p/T?M where Ig(z)l<M 

I~el < 1 
I0~ I _-< e x p ( -  t 6 Z 4 + (T/p) ~ z 3 t 11/2) 

so that 

- -  w 2 exp {t 6 (T/p) 2 (w 3 - w4)} dw 
[J21 = (8re)§ p~_ J a 

where z = (T/p)~w. 

Integrating by parts, we get, 

I f  w t6(T/p)2(w3--w4) ] Up ~ 1 lim 1 - 4  I&l < (8~? r~ # w-~oo ~ exp ~_~w-w)g dwJ 

[ (1 )] 
_ U p  ~ 1 lim 1 - y  + 1 ~ 0  as t ~ o o  

(8~?T ~ # w-~oo 3 - 4 W  

Hence 1+(~ as t ~  oo. Also since R e ( -  itf_) is negative, I2f)-*0 as t ~  oo. In the same way we 
can prove that the third and the fourth integrals tend to zero as t~oo.  

Finally we consider the integral Ia. The major contribution to this integral arises from the end 
points and from the stationary points off_+ (s). As f_ (s) is an odd extension off+ (s), it suffices 
to consider the equation f ;  (s)= 0. These roots are the points of intersection of the positive 
branch of the curve 

y2 = U {s (a z - s 2) tanh sh} 

with the curve 

y = - �89  2 "---'3s 2) tanh sh + h (sa 2 - s 3) sech 2 sh} 

and are all simple (see fig. 3). Using the method of stationary phase, we find I,_~ O (t -~) ~ 0  as 
y 

_o_ _o_ o_ o_ S 

o ~ o  Figure 3 
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t--+ 00. We therefore conclude that the steady state solution exists. 

Case II  U 2=gh 

In this case it is more convenient to deal with the time derivative of the velocity potential: 

U ( .  s ~  r cosh s (y + h) e isx 
qSt - (8rcp T) ~ ~ k(s) cosh sh {exp ( -  itf+) - exp ( -  itf_) } ds 

Aside from the integrabie singularities at s = + a, the only singularities of the integrand are on 
the axis im s=0.  The contour therefore can be changed back to the real axis. We shall again 
employ the method of stationary phase to get the first term in the asymptotic expansion of ~b t. 
The function f ;  (s) has only simple zeros, while the functionf'_ (s) has a zero of second order at 
the origin and simple zeros elsewhere on the real line. The contribution from the neighborhood 
of the origin for large t, will dominate that from anywhere else. Hence 

1 
~bt -~ AH(0) if_ (0)t[~ A = constant r  

Also H (0) in general is not zero. It follows 

o (t-*), 

i.e., the time dependent part of the velocity potential 4) becomes infinite like t ~. This shows that 
the linear theory which assumes small disturbances fails to yield steady state solutions at the 
critical velocity U = (gh) ~. In this case one has to take recourse to the nonlinear theory. 

Case l I I  U 2< gh. 

We shall again show the time dependent part of ~b x tends to zero as t ~  or. This case differs from 
the case I in that f+ (s) and f_ (s) each have an additional simple zero at s = -  fl and s=  fi 
respectively. We have therefore to consider the two integrals: 

- U f f  s 2 cosh s(y+h)e isx e - i t&&,  
Io7 - 2(2upT)�89 ; k(s)cosh sh f+_ 

where F T are two small semicircles (excluding the end points) in the lower half of the s plane, 
centered at s = -T-fi respectively. (See figure 2). Here we have changed the contour L back to 
the real axis in the vicinity of the origin because the origin is no longer a singularity of the 
integrand. In order to see that I-+0 as t-+ o% we first notice that, 

1 {U2( l_2h  fi cosech(2h[3)+2fl(T/p)tanh hfi} >0  f "  (fl) = 

Similartyf~ ( - f l ) > 0 .  Hence Re{ - i t f+}  and Re{ - i t f_}  are both negative on F_,  F+. As a 
result I--+0 as t--+oo. 

On the rest of the contour L, the conclusions of the case I hold. Hence the steady state again 
exists in this case. 

5. Radiation Conditions for the Steady Flow 

The radiation conditions for the resulting steady state: 

- U  fl~ Hs z cosh s(y+h)e is~ 
q~ - (2rcpT) ~.,~ s 2 U2- (T /p)s (a2-s2) tanh  sh ds 

are obtained by considering the above integral in the limit Ixi~ oo. 
In Case I i.e. when U 2 > gh, the integrand has no singularity on the real axis and so we deform 

the contour back to the real line. The resulting integral is readily seen to be absolutely con- 
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vergent.  Hence  by  the R i e m a n - L e b e s g u e  L e m m a ,  qS~ > 0 as x---, oe. I t  fo l lowsthat  the d is turbance 
dies bo th  ups t r eam and the downst ream.  In  the subcritical case, the s i tuat ion turns  out  to be 
different. The  con tour  is again  deformed as shown in figure 2. 

Let  x <  0. On the semi-circular  parts  Re(isx)  < 0 and the rest of  the function is bounded.  
Hence  the cont r ibut ion  to q5 x f rom F_, F+ --*0 as x-~oo.  On the straight  parts  we again invoke 
the Rieman-Lebesgue  L e m m a  to conclude that  the dis turbance dies upst ream.  Let  x >0 .  
The  possible non-zero  contr ibut ions  result f rom the two semi-circles only. Arguing as above,  
it can be shown that  the two semi-circles in the upper  half  plane centered at s = _+ fl yield 
vanishing contr ibut ions  when x--, ~ .  Hence  we can evaluate  the integrals for q~x, for large x, 
over  the comple te  circle. This can be done  by  the me thod  of residue calculus. We  have, then, 

~b~ -~ i(2n) ~ 13 2 U {H (fl)e ;a~ - H ( - fl) e-~a~} 
cosh fl (y + h) H 

cosh flh 

where 

s -  fl 
H lim 

s 2 U 2 - s ( 9 -  s2(T/p))tanh sh 

1 

(9 + f12 T/p) tanh h f l -  ( 9 f l -  f13 T/p) sech 2 h f l '  

The  dis turbance downst ream,  therefore, does not,  in general, die. 

Jill < (g/T) ~- 
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